Semester - I

Major Core I: GENERAL CHEMISTRY - I

Course Code: CC2011

Hours Per week	Credits	Total Hours	Marks
4	4	60	100

Objectives

- To gain basic knowledge on classification nomenclature of organic compounds
- To understand the quantum theory and wave mechanical concept
- To understand the chemistry of s block elements and the principles of volumetric analysis

Course Outcome

COs	Upon completion of this course, students will	PSO	Cognitive
	be able to	Addressed	Level
CO - 1	understand the structure and naming of various	PSO-1	U
	organic compounds		
CO - 2	interpret various electronic effects and chemical	PSO-3	An
	bonding		
CO - 3	analyse the periodic properties of elements	PSO-2	An
CO - 4	apply wave mechanical concept in other fields	PSO-6	A
CO - 5	predict the properties of elements and the	PSO-6	An
	principle behind volumetric analysis		

Total Number of Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Topics	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Classific	ation and Nomenclature				
	2	Classification of organic compounds - based on the nature of carbon skeleton and functional groups - classification of C and H atoms of organic compounds (primary/secondary/tertiary) IUPAC system of nomenclature of common organic compounds (upto C-10) - alkanes, alkenes and alkynes. Naming of cycloalkanes, bicycloalkanes with and without bridges and aromatic compounds	4	Classify organic compounds Know about the IUPAC nomenclature of organic compounds	Lecture and power point presentation Lecture and power point presentation	Evaluation through Multiple choice questions, short test, quiz, slip test and group discussion Formative assessment I

	4	Naming of organic compounds with one functional group - halogen compounds, alcohols, phenol, aldehydes, ketones, carboxylic acids and its derivatives, cyano compounds, amines, nitro compounds Naming of compounds with two functional groups - naming of compounds with more than one carbon chain. Naming of heterocyclic compounds containing one and two hetero atoms present in five/six membered rings	3	Learn to name organic compounds with one functional group Know to name organic compounds	Lecture and seminar Lecture with power point presentation	
II	Bonding	in Organic Molecules	1	<u> </u>	1	
	1	Hybridization and geometry - bond angle, bond length, bond strength of C-H and C-C bonds -Van der Waal's interactions, Inter & Intra molecular forces and their effects on physical properties	3	Classify the elements based on the force of attraction and properties.	Question answer session	Evaluation through Multiple choice questions, short test, quiz and slip
	2	Electronic effects - inductive effect, resonance effect - drawing of resonance structures - conditions for resonance - stability of resonance structures	3	Know about various types of electronic effects	Lecture	Formative assessment I
	3	Hyper conjugation, electromeric effect, steric effect - steric overcrowding - steric inhibition of resonance - steric relief (with examples)	3	Distinguish various effects	Lecture with power point presentation and Group discussion	
	4	Dissociation of bonds - homolysis and heterolysis - radicals, carbocations, carbanions - electrophiles and nucleophiles - Influence of electronic effects - dipole moment - relative strengths of acids and bases - stability of olefins - stability of radicals, carbocations and carbanions	3	Know about electrophiles, nucleophiles and stability of different ions	Lecture with power point presentation	

III	Periodic	Properties				
	1	Atomic orbitals - Quantum numbers- Principal, Azimuthal, Magnetic and Spin quantum numbers and their significance	2	Know about various quantum numbers and filling up of atomic orbitals	Seminar and power point presentation	Evaluation through Multiple choice questions, short test,
	2	Principles governing the occupancy of electrons in various quantum levels-Pauli's exclusion principle - Hund's rule- Aufbau Principle, (n+1) rule	2	Learn about different principles governing the occupancy of electrons	Lecture and Problem solving	quiz and class test Formative assessment II
	3	Stability of half-filled and completely filled orbitals-inert pair effect. Variation of metallic characters - Factors affecting the periodic properties	2	Remember the factors affecting the periodic properties	Lecture and Problem solving	
	4	Anomalies and variations in atomic radius, ionic radius, electronic configuration	2	Calculate the atomic radius and ionic radius	Problem solving	
	5	Variation of electron affinity and electro negativity, ionization energy, metallic character of elements along the group and periods	2	Distinguish various periodic properties	Illustration, Seminar and Power point presentation	
	6	Influence of various characters on stability, colour, coordination number, geometry, physical and chemical properties	2	Calculate coordination number	Power point presentation	
IV	Atomic S	Structure		1	l	
	1	Planck's quantum theory - Photoelectric effect, Compton effect	2	Understand the Plank's quantum theory	Power point presentation and videos	Evaluation through Multiple choice
	2	Bohr's model of hydrogen atom	2	Know Bohr's model of hydrogen atom	Lecture	questions, short test, quiz and
	3	Wave particle duality, de Broglie equation, Heisenberg uncertainty principle	2	Learn to derive de Broglie equation	Lecture	class test

	4	Eigen function and Eigen	2	Differentiate	Problem	Formative
		value - Postulates of Quantum		Eigen function	solving	assessment
		mechanics		and Eigen		II
	-		4	value	T .	
	5	Schrodinger's time	4	Understand the	Lecture	
		independent wave equation		importance of		
		(no derivation), wave functions and its physical		Schrodinger's		
		properties -Normalization and		wave equation		
		Orthogonal function				
V	i) s - blo	ck elements				
•		iples of Volumetric Analysis				
	1	Position of hydrogen in the	3	Recognize the	Lecture with	Evaluation
		periodic table, General		various metals,	power point	through
		characteristics of s - block		oxides and	presentation	Multiple
		elements. Compounds of s-		hydroxides		choice
		block metals - oxides,				questions,
		hydroxides, peroxides,				short test,
		superoxide's-preparation and				quiz and
		properties - oxo salts -				class test
		carbonates - bicarbonates -				
		nitrates - halides and				Formative
		polyhalides	_			assessment I
	2	Extraction of Be and Mg -	2	Understand the	Lecture with	
		physical and chemical		extraction	videos	
	2	properties - Uses	1	process	G .	
	3	Complexes of s-block metals -	1	Explicate the	Seminar	
		complexes with crown ethers -		biological		
		biological importance sodium and potassium -		importance of sodium and		
		Organometallic compounds of		potassium		
		Li and Be		potassium		
	4	General principles of	1	Know about	Power point	
		volumetric Analysis, Types of		the principles	presentation,	
		titrations. Requirements for		of volumetric	seminar	
		titrimetric analysis.		analysis		
		Concentration systems				
	5	Primary and secondary	2	Understand the	Demonstration	
		standards, criteria for primary		criteria of		
		standards, preparation of		preparation of		
		standard solutions,		standard		
		standardization of solutions.		solutions		
		Limitation of volumetric				
		analysis, endpoint and				
		equivalence point	1	A	Daniel d'	
	6	Neutralisation-titration curve,	1	Acquire	Demonstration	
		theory of indicators, choice of indicators. Use of		knowledge about the use		
				of indicators.		
		phenolphthalein and methyl		of indicators.		
	<u> </u>	orange				

7	Complexometric titrations:	2	Analyse the	Problem	
	Stability of complexes,		stability of	solving	
	titration involving EDTA.		complexes		
	Metal ion indicators and				
	characteristics. Problems				
	based on titrimetric analysis				

Course Instructor: Dr. R. Gladis Latha HOD: Dr. G. Leema Rose

Semester I Allied Chemistry - Botany and Zoology Major Chemistry for Life Sciences Course Code: CA2011

Hours Per week	Credits	Total Hours	Marks
4	3	60	100

Objectives:

- To acquire knowledge on atomic structure and bonding
- To understand the importance of photochemistry and catalysis
- To apply the principles of chromatography techniques

Course Outcome

COs	Upon completion of this course, the students will	PSO	Cognitive
	be able to:	Addressed	Level
CO-1	remember the structure and bonding in atoms and molecules	PSO-1	R
CO-2	analyse the types of bonding and the ways of expressing concentration in molecules	PSO-2	An
CO-2	understand the concepts of biophysical analysis, catalysis and buffer action	PSO-1	U
CO-3	apply the concepts of photochemistry and chromatography to various chemical processes.	PSO-6	A

Total Number of Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module	Topics	Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Atomic S	Structure				
	1	Dual nature of electron, de-Broglie equation	2	Acquire knowledge on Dual nature of electron and de- Broglie equation	Lecture, power point presentation and videos	Evaluation through Multiple choice
	2	Davisson and Germer experiment	1	Understand Davisson and Germer experiment	Lecture and power point presentation	questions, short test, quiz
	3	Heisenberg's uncertainty principle and its significance	1	Understand Heisenberg's uncertainty principle and its significance	Lecture, power point presentation and discussion	Formative assessment I

	4	Compton effect - Schrodinger's wave equation and its significance, eigen values and eigen functions, quantum numbers and their significance	3	Distinguish eigen values and eigen functions	Lecture and power point presentation	
	5	Atomic orbitals - significance, shapes, difference between orbit and orbital	1	Differentiate between orbit and orbital	Lecture, power point presentation and illustration	
	6	Rules for filling up of orbitals - Pauli's exclusion principle, Aufbau principle and Hund's rule	2	Know about different principles governing the filling up of orbitals	Lecture and power point presentation	
	7	Electronic configuration of elements up to 20	2	Gain knowledge on the filling up of atomic orbitals	Lecture and power point presentation	
II	Chemica	al bonding				
	1	Ionic bond, formation of ionic bond, general characteristics of ionic compounds	1	Know about ionic bond and its characteristics	Lecture and power point presentation	Evaluation through Multiple choice questions,
	2	Lattice energy, Born-Haber cycle and its applications	2	Understand lattice energy	Lecture and power point presentation	short test, quiz
	3	Covalent bond - formation of covalent bond with examples characteristics of covalent compounds	2	Gain Knowledge about Covalent bond	Lecture and power point presentation	Formative assessment I
	4	Ionic character in covalent compounds, Fajan's rule	1	Acquire knowledge about Ionic character and Fajan's rule	Lecture and power point presentation	
	5	Coordinate bond - formation of coordinate bond with examples.	2	Understand Coordinate bond formation	Lecture and Power point presentation	
	6	Metallic bond -band theory, conductors, insulators and semiconductors.	2	Explicate the difference between conductors, insulators, semiconductors	Lecture with power point presentation	

	7	Hydrogen bonding -	2	Understand	Lecture with	
		types - inter and		Hydrogen bonding	power point	
		intramolecular and		and its effect	presentation	
		effect of hydrogen				
		bonding.				
III	Photoch	emistry				
	1	Importance of	3	Differentiate between	Lecture and power	Evaluation
		photochemistry,		thermal and	point presentation	through
		difference between		photochemical		Multiple
		thermal and		reactions		choice
		photochemical				questions,
		reactions. Laws of				short test,
		photochemistry -				quiz
		Beer-Lambert's				
		Law, Grother's-				Formative
		Drapers law and				assessment
		Stark-Einstein's law	2	TI. danska u d	T - strang 1	II
	2	Quantum efficiency,	3	Understand various	Lecture and power	
		Electronic		electronic excitations	point presentation	
		excitations - singlet and triplet states,				
		Jablonski diagram,				
		internal conversion -				
		intersystem crossing				
		- fluorescence,				
		phosphorescence.				
		Difference between				
		fluorescence and				
		phosphorescence				
	3	Types of	2	Differentiate primary	Lecture and power	
		photochemical		and secondary	point presentation	
		reactions based on		process of		
		quantum efficiency		photochemical		
		$(\phi = 1, \phi < 1 \text{ and } \phi >$		reactions		
		1) - primary and				
		secondary process of				
		photochemical				
		reactions				
	4	Photochemical rate	2	Acquire knowledge	Lecture with	
		law - kinetics of		about kinetics of	power point	
		photochemical		photochemical	presentation	
		combination of H ₂		combination of H ₂		
		and Cl ₂ and		and Cl ₂ -		
		decomposition of HI		decomposition of HI		
	5	Photosensitization,	2	Differentiate	Lecture with	
)	photosensitizers,	<i>L</i>	chemiluminescence	power point	
		chemiluminescence		and bioluminescence.	presentation	
		and bioluminescence		and bioluminescence.	presentation	
		and bioluminescence				
	I			1	1	

IV	Biophys	ical Analysis and Catal	ysis			
	1	Osmosis, osmotic pressure and isotonic solutions	1	Understand Osmosis, osmotic pressure, isotonic solutions	Lecture with power point presentation	Evaluation through Multiple
	2	Determination of molar mass by osmotic pressure measurement	2	Acquire knowledge on molar mass by osmotic pressure measurement	Lecture with power point presentation	choice questions, short test, quiz
	3	Reverse osmosis	1	Understand reverse osmosis	Lecture and power point presentation	Formative assessment
	4	Adsorption - types, factors influencing adsorption and applications of adsorption	2	Acquire knowledge on adsorption, types, factors influencing adsorption and its applications	Lecture and power point presentation	П
	5	Catalysis - types, theories, intermediate compound formation theory and adsorption theory	3	Understand catalysis, types and theories	Lecture and power point presentation	
	6	Enzyme catalysis - Michaelis-Menten equation and theory	3	Understand Enzyme catalysis, Michaelis, Menten equation	Lecture and power point presentation	
V	Analytic	cal Chemistry				<u> </u>
	1	Methods of expressing concentration - normality, molarity, molality, mole fraction, ppm and ppb	2	Understand methods of expressing concentration of solution	Lecture and power point presentation	Evaluation through Multiple choice questions, short test, quiz
	2	Ionic product of water - pH and pOH	1	Acquire knowledge about Ionic product of water, pH and pOH	Lecture and power point presentation	Formative assessment I
	3	Strength of acids and bases - K _a and K _b , pK _a and pK _b	2	Understand strength of acids and bases	Lecture and power point presentation	
	4	Buffer solutions - examples and theory of buffer action	1	Know about buffer solutions and theory of buffer action	Lecture and power point presentation	

5	Chromatography -	2	Understand	Lecture with
	classification,		chromatography and	videos
	Column		column	
	chromatography -		chromatography	
	principle,			
	experimental			
	techniques, factors			
	affecting column			
	efficiency and its			
	applications			
6	TLC - principle,	1	Know about TLC	Lecture with
	experimental			videos
	techniques,			
	advantages,			
	limitations and			
	applications			
7	GC – principle,	2	Acquire knowledge	Lecture with
	experimental		about GC	videos
	techniques and			
	applications			
8	HPLC - principle	1	Understand HPLC	Lecture with
	and experimental			videos
	technique			

Course Instructor: Dr. S. Ajith Sinthuja HOD: Dr. G. Leema Rose

Semester - I Part IV: NME Applied Chemistry - I

Course Code: CNM201

Hours Per week	Credits	Total Hours	Marks
2	2	30	100

Objectives:

- To know the preparation and importance of agrochemicals
- To acquire knowledge about soaps and sugar
- To understand the chemicals used in day to day articles

Course Outcome

CO	Upon completion of this course, the students will	PSO	Cognitive
	be able to:	Addressed	Level
CO-1	remember the importance of soaps and detergents	PSO-2	R
CO-2	analyse the characteristics and advantages of agrochemicals	PSO-2	An
CO-2	understand the process of manufacture of sugar and paper	PSO-4	U
CO-3	apply the chemical reactions to synthesize day to day articles	PSO-4	A

Total Number of Contact hours: 30 (Including lectures, assignments and tests)

Unit	Section	Topics	Hours	Learning outcome	Pedagogy	Assessment / Evaluation			
I	Fertilizers								
	1	Plant nutrients - macronutrients - micronutrients -need for fertilizers - characteristics of a good fertilizer -role of N, P and K in plant growth	2	Know the role of nutrients and fertilizers in plants	Lecture and power point presentation	Evaluation through Multiple choice questions, short test, quiz			
	2	Classification of fertilizers - natural fertilizers - artificial fertilizers - manufacture and uses of artificial fertilizers -urea - calcium cyanamide	2	Classify fertilizers and understand the method of manufacturing	Lecture and discussion	Formative assessment I			

II	3 Pesticide	Calcium ammonium nitrate - superphosphate of lime- triple superphosphate - potassium chloride. Biofertilizers and their advantages	2	Remember the methods of manufacture of fertilizers	Explanation using equations	
	2	Pesticides- classification based on the use and chemical composition. Insecticides- structure and uses of lead arsenate - calcium arsenate - methoxychlor - baygon - malathion- D.D.T BHC Fungicides -	2	Classify and know the structure and uses of pesticides Remember the uses	Lecture Lecture and	Evaluation through Multiple choice questions, short test, quiz Formative assessment I
		preparation and uses of limesulphur - bordeaux mixture - sodium sulphate - thallium sulphate		and methods of preparation of fungicides	group discussion	
	3	Weedicides - structure and uses of butachlor - eptam - DNOC. Rodenticides - preparation and uses of zinc phosphide - aluminium phosphide - warfarin	2	Analyse the characteristics and advantages of weedicides and rodenticides	Lecture and power point presentation	
III	Soaps a	nd detergents				
	1	Soaps -classification -hard soap - soft soap - raw materials -manufacture of toilet soap - transparent soap - liquid soap - medicated soap - herbal soap - cleansing action of soap	3	Acquire knowledge about soaps	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz Formative assessment II

	2	Detergents - classification - examples- advantages of detergents over soaps -detergent action -detergent chemicals-additives - excipients - colors - flavours - environmental hazards	3	Remember the importance of detergents	Lecture and group discussion	
IV	Sugar ar	nd Paper industry				
	1	Sugar -manufacture - double sulphitation process - refining and grading of sugar-sugar substitute - saccharin - synthesis and uses - manufacture of ethanol from molasses.	2	Understand the process of manufacture and uses of sugar and sugar substitute	Lecture with power point presentation	Evaluation through Multiple choice questions, short test, quiz Formative assessment
	2	Paper - manufacture - production of wood pulp by sulphate process - processing - blending - beating - refining and calendaring -	2	Understand the process of manufacture of paper	Lecture and discussion	II
	3	Types of paper - printing paper - newsprint paper - writing paper - wrapping paper - bond paper - art paper - blotting paper - tissue paper - parchment paper - cardboard.	2	Remember the types of paper	Peer group teaching	
V	Chemica	ls in day-to-day life		•		,
	1	Ingredients and preparation of tooth powder - tooth paste - writing inks - gum paste - boot polish - talcum powder	3	Apply chemical principles to prepare articles of day - to-day life.	Lecture with power point presentation	Evaluation through Multiple choice questions, short test,

2	Ingredients and	3	Apply chemical	Peer group	quiz
	preparation of		principles to prepare	teaching	
	sealing wax - agar		articles of day - to-		Formative
	agar - chalk crayons		day life		assessment
	-liquid blues -				I
	camphor tablets -				
	agar battis -				
	phenoyle- moth				
	balls.				

Course Instructor: Ms. L. Deva Vijila HOD: Dr. G. Leema Rose

B.Sc. Chemistry

Academic Year 2018-2019 - Odd Semester Programme Outcomes of B.Sc.

Apply the broaden and in-depth knowledge of science and computing to analyse, think creatively and generate solutions to face the global challenges.

Foster intellectual curiosity, critical thinking and logical reasoning.

Adapt to different roles and responsibilities and develop leadership qualities in multicultural working environment by relating to diversity and ethical practices.

Update the techniques and acquire skills to develop systems and methods to solve current problems.

Programme Specific Outcome

PSO No.	Upon completion of B.Sc Chemistry, students will be able to:
PSO 1.	Understand the fundamentals, theories and principles of Organic, Inorganic and Physical chemistry
PSO 2.	Interpret the mechanism of chemical reactions.
PSO 3.	Analyze and solve problems systematically.
PSO 4.	Relate the presence and impact of chemical compounds in life
PSO 5.	Prepare / isolate/ synthesize and characterize chemical compounds
PSO 6.	Analyze the properties of metals, non-metals, alloys and other chemical compounds / macro molecules
PSO 7.	Carryout procedures as per laboratory standards in the areas of inorganic, organic and physical chemistry
PSO 8.	Identify and estimate the chemical compounds using classical and modern methods.
PSO 9.	Understand the applications of chemistry in medicine, research, agriculture and industry.

:

:

:

: III : Organic Chemistry – I Semester Name of the : CC1731 **Subject Code**

Number of Hours Per week	Number of Credit	Total Number of Hours	Marks
4	4	60	100

Course Outcome

CO No.	Expected Learning Outcomes Upon completion of this course, the students will be able to:	PSO	CL
CO 1.	Name and to understand the nomenclature of organic molecules based on IUPAC system & apply the rules to name the organic compounds	PSO 1, PSO 3	U
CO 2.	Relate the shapes of molecules with hybridization	PSO 2 PSO 4	Ap
CO 3.	Understand and apply the different polar effects occurring in organic molecules	PSO 1,	A
CO 4.	Prepare hydrocarbons, alkyl halides, ethers, alcohols reactions, distinction among alcohols & estimation of alcohols	PSO 5	С
CO 5.	Differentiate Markowni and Anti Markownikoff addition	PSO 3	An, C
CO 6.	Infer different types of reactions and reaction mechanisms	PSO 2	Е

Teaching Plan
Total Contact hours: 60 (Including lectures, assignments and tests)

Total Contact hours: 60 (Including lectures, assignments and tests)							Ŧ	
Unit	Unit Module		Topics	Lecture hours	Learning Outcome	Pedagogy	Assessment/ Evaluation	
I	Basics Concepts of Organic Chemistry							
	1	of no	cation of organic ands and IUPAC system menclature, Longest chain owest number rule.		Know to write IUPAC name	Lecture, Group discussion		
	2	carbons ketones	naming of hydro s, alcohols, aldehydes, s, amines, and unds with additional	3	Ability to solve problems	Lecture, Seminar		
	3	Sp^2SPh	isation – types – sp ³ ybridisation with CH ₄ ₂ H ₂ as examples.	4	Differentiate various	Lecture with ppt	Multiple choice	
	4	Influend bond propert	ce of hybridization on	2	Learn types of fission	seminar	Assignment on IUPAC	
	5	exanPreparastability	philes and nucleophiles apples. ttion, structure and of Carbanions, attions and free radicals.	2	Distinguish between	Lecture Question answer session	names	
II	Electronic	Displa	cements				•	

	1	Inductive effect in organic molecules, +I and – I groups, comparison of strength of substituted	3	Understand the Inductive effect		
	2	Electromeric effect – definition – types – examples and its applications, Resonance effect – definition – relative strength of acids, resonance effect and conjugated system, Hyper conjugation effect – definition – stability of carbocations and free radicals.	5	Analyse the stability of intermediates.	Lecture with ppt, Group discussion	Quiz Short test Formative assessment - I
III	Chemist	ry of Aliphatic hydrocarbons		- 	·	•
		Chemistry of alkanes, general methods of preparation, Wurtz reaction, free radical substitutions -halogenation.	2	Learn the synthesis of alkanes	Short test	
		Formation of alkenes and alkynes by elimination reactions - Saytzeff and Hofmann eliminations.	2	Know the difference between elimination.	seminar	
		Electrophilic addition of hydrogen halide - mechanisms of Markownikoffand AntiM Markownikoffaddition.	2	Know addition reactions	Lecture	Evaluation through multiple choice
		Hydroboration, oxidation, ozonolysis, reduction (catalytic and chemical), cis and transa hydroxylation, 1, 2- and 1, 4 - addition reactions in conjugated dienes, Diels-Alder reaction.	3	Evaluate the 1, 2- and 1, 4 - addition	Group discussion and writing mechanism	questions Qquiz
		Acidity, electrophilic and nucleophilic additions of alkynes, Birch reduction- mechanism.	2	Analyse the additions of alkynes	Lecture	
IV	Chemisti	ry of halogenated hydrocarbons	F	-	ı r	,
	1	General methods of preparation of alkyl halides, Nucleophilic substitution reactions – Sn1mechanism, Sn2 mechanism with stereochemical aspects and effect of solvent, Sni mechanisms with stereochemical aspects and effect of solvent, Differences between Sn1, Sn2.	5	Be able to evaluate the substitution reactions	Lecture	Evaluation through short test Assignment on nucleophilic substitution reactions
	2	E2 mechanism. elimination – E1 mechanism.	2	Differentiate E1 from E2 mechanism	Lecture	Quiz Multiple

	3	Preparation, properties of vinyl chloride, allyl chloride, tetrafluoro ethylene, westron, chloroform, carbon tetrachloride. andwestrosol.	4	Learn the preparation of alkyl halides	Lecture Question answer session	choice questions Formative assessment II
V	Function	al groups containing oxygen	_	_	_	
	1	General methods of preparation and properties of alcohols.	2	Learn the synthesis	seminar	
	2	Distinction among 1°, 2°, 3° alcohols - oxidation method, Victor Meyer method and Lucas method.	2	Analyze the alcohol samples	Lecture Demonstrati on	
	3	Preparation and properties of glycols, Oxidation of glycols by periodic acid and lead tetra acetate. Mechanism of Pinacola Pinacolone rearrangement.	3	Learn the preparation of Dihydric	Lecture with ppt	Short test
	4	Glycerol -manufacture (hydrolysis of fats and oils), synthesis of glycerol from propene, reactions, preparation of nitroglycerine. Estimation of number of hydroxyl groups.	3	Synthesise glycerol	Lecture Demonstrati on	Formative assessmentIII
	5	Preparation and reactions of ethers ethers with acids, epoxides - reactions of epoxides with alcohols.	2	Know the preparation of ethers	Illustration seminar	

Course Instructor: R. GladisLatha HOD: G. Leema Rose

Semester

Name of the Course : Subject Code : **Dairy Chemistry**

CC1732

Number of Hours Per week	Number of Credit	Total Number of Hours	Marks
4	4	60	100

Course Outcome

CO No.	Expected Learning Outcomes Upon completion of this course, the students will be able to:	PSO	CL
CO 1.	Recall the physical properties of milk	PSO 1	R
CO 2.	Cite examples of various factors affecting the quality of	PSO 6	U
CO 3.	Assess the microbiology of milk	PSO 6	Е
CO 4.	Collect various methods to pasteurize milk	PSO 1	С
CO 5.	Apply the methods of manufacture of	PSO 7	Ap

	special milks and dairy cleaning		
CO 6.	Correlate the acidity, moisture content and fat content of milk	PSO 6	An
CO 7.	Estimate the amount of lactose in milk	PSO 7	Е
CO 8.	Choose milk proteins, milk carbohydrates and milk vitamins and dairy products	PSO 5	Е
CO 9.	Utilize methods of separation of cream, utter, ghee, cheese &kheer	PSO 7	Ap
CO 10.	Explain preparation of Dairy sweets	PSO 5	Ap

Teaching Plan
Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Module		Topics : 60 (Include	Lectur	re	Learning		dagogy	Assessment/
т	D	4° 6		hour	'S	outcome			Evaluation
I	Prope	erties of	milk						- 10
	1.	and prope odour gravit milk Facto comp	r, acidity, specific cy, conductivity of rs affecting osition of milk and nutritive value	4	R af	ain nowledge bout milk. ecall the factors fecting omposition of hilk. To know the utritive value of bod.	;	Lecture	Assignment
	2.	Flavo their Uses of fat Estim solids Adult	ur defects in milk causes and prevention of milk and Estimation ation of acidity and total in milk erants in milk definition,	4	m es ac sc D	now the nethods of stimating the cidity and total blids in milk netect the dulterants present a milk.		Lecture wirh PPT illustration	
	3.	Estim solids Adult	ation of acidity and total in milk erants in milk definition non adulterants and their	3	th pi	o know ne reservatives Idded to milk.			- Multiple choice questions
	4.	- comm	rvatives and detection alizers in milk –	3	th	now ne nportance of eutralizers in milk	ς	Group discussion	Quiz
II	Microl	biology	of milk		•				
	1.	defini requir metho	urization – tion, objectives and ements Various ods of	4	th	nportance		Lecture	Short test Seminar Quiz

F	•	Ţ s		Į*	Ţ	
		pasteurization and batch (LTLT) pasteurization HTST pasteurization and UHT pasteurization Uperization, vacuum		of pasteurization Know the methods of pasteurization.		
	2.	Dairy detergents, cleaning and sanitizing procedure CIP (Cleaning in place).	2	Gain knowledge about dairy detergents. Recognize the	Mind mapping	Formative
	3.	Sterilizers – definition , properties Cleaning and sterilization of dairy utensils, Chloramine – T and hypochlorite solution	5	Define sterilizers and know their properties. Discuss the methods of cleaning and sterilizing	Question answer session	assessment -I
III	Special	Milks	T	<u> </u>	т	
	1.	Sterilized milk – definition, equirements, advantages and disadvantages and method	2	To discuss the advantages and disadvantages	Lecture with PPT illustration	Quiz
	2.	Homogenized milk - definition, merits and demerits, method of manufacture	3	Gain knowledge about the merits and demerits of homogenized milk. Know about flavoured milk	Mind mapping	
	3.	Vitaminized milk and Standardized milk Single and double toned milk, Humanised milk.	2	Explain the importance of vitaminized and standardized milk. To explain about single and double toned milk.	Question answer session	
	4.	Dried milk - Definition, composition, objectives of production andmanufacture Role of milk constituents,	3	To know about dried milk. Realize the need for quality in drying milk	Panel session on adulterants in milk	Formative assessmen t-II
	5.	Condensed Milk - Definition, composition, objectives and manufacture Uses of condensed and evaporated milk Types of condensed milk - plane, super-heated& frozen condensed milk.	3	Recognize the objectives and composition of condensed milk. List the uses of condensed milk To explain the types of condensed milk.	Lecture	
IV	Cream	, Butter, Ghee, Ice cream and	Cheese	•	•	•
	1.	Creams: Definition,	4	Define creams. Gain knowledge	Question answer	short test

	2.	in cream Butter: Definition, composition, manufacture and estimation of fat in butter Ghee – constituents, adulterants and their detection Rancidity of ghee and their types Ice cream – definition, classification , composition, food and nutritive value Defects in ice cream, their Cheese: Introduction – definition – classification – composition – food and nutritive value Cottage cheese, processed	3	about butter Know the methods of determination of acidity and moisture content. Gain knowledge about ghee. List the types of rancidity Gain knowledge about ice creams Recall the methods of prevention of defects in ice cream Gain knowledge about cheese. List the various types of cheese.	Lecture	Quiz Assignme nt
		cheese – defects in cheese their causes and prevention.				
V	1	s, Carbohydrates, Vitamins in 1			Ť	Ţ
	1.	Physical and electrical properties of Milk Proteins Effects of heat on Milk Proteins, Milk Enzymes and functions Milk carbohydrate:Lactose – structure.	4	List the physical and chemical properties of milk. Understand the effect of heat on milk proteins. Elucidate	Mind mapping	Quiz Formative assessmen t-III
	2.	Reactions of lactose Estimation of lactose in milk -Picric acids method and chloroamine - T method Milk vitamins - water soluble and insoluble.	3	Recall the reactions of lactose. Gain knowledge about the estimation of lactose. List the various vitamins present in	Lecture	Multiple choice questions

product. questions	3.	Dairy Sweets – preparationKheer – Khoa/ Mawa – Khurchan – RabriM Kulfi/Malai –Ka- baraf- Dahi –Paneer Chhana – Makkhan – Lassi – Ghee Residue, butter milk.	3	Gain knowledge about the methods of preparing dairy sweets. Know the different kinds of dairy product.	Lecture wirh PPT illustration	Multiple choice questions Assignme nt Multiple choice questions
--------------------	----	---	---	--	-------------------------------------	--

Course Instructor: L. Deva Vijila

HOD: G. Leema Rose

Semester III

Allied Chemistry - General Chemistry CA1731 Name of the Course :

Course Code

Number of Hours Per week	Number of Credits	Total Number of Hours	Marks
4	4	60	100

Course Outcome

CO No.	Expected Learning Outcomes Upon completion of this course, the students will be able to:	PSO	CL
CO 1.	Know about the filling of electrons in atomic orbitals	PSO 1	R
CO 2.	Understand the principles behind atomic structure, dipole- moment applications & Born Haber cycle	PSO 1	U
CO 3.	Interpret the characteristics of ionic covalent, hydrocarbons compounds	PSO 2	U
CO 4.	VSEPR theory, deduce the shapes of molecules using VSEPR theory & hybridization	PSO 2	Ap
CO 5.	Validate the VB theory and benzenoid compounds	PSO 2	E
CO 6.	Differentiate the types of organic reactions, cleavage of bonds and reagents.	PSO 3	An
CO 7.	Discuss the preparation structure and stability of hydrocarbons, aliphatic hydrocarbons	PSO 5	С

Teaching Plan Total Contact hours: 60 (Including lectures, assignments and tests)

Unit	Modu	ule	Topics	Lectur	re	Learning	Pedagogy	Assessment/ Evaluation
I	Atom	nic Str	ucture	•		•		•
	1.	Brog Dav Gern - He unce its	I nature of electron – de glie equation isson and mer experiment isenberg's ertainity principle and significance rodinger's wave attion and its significance	3	par wa Un Da Ge Ex Re	stinguish between rticle and ve. derstand visson and rmer's periment call hrodinger wave	Lecture discussion	Short test
	2.	eige Qua sign orbi	en value and n functions ntum numbers and their ificance. Atomic tals - ificance - shapes.	3	the cha Eig and fur Re im of	aracteristic of gen values de Eigen actions. alize the portance	Lecture	Multiple choice
	3.	and up excl Aufl rule conf	erence between orbit orbital Rules for filling of orbitals – Pauli's usion principle – bau principle – Hund's Electronic iguration of elements atomic number up to		the fol fill ele Wi	understand rules lowed in ing up of ctrons. rite the electronic infiguration of	Question answer session	questions Assignment Formative assessment -I
II	Che	mical	Bonding					•
	1.	Gen ionic	nation of ionic pound with examples eral characteristics of a compounds ice energy – Born Haber e and its applications		the of Re ger charior con	ionic bond. call the neral aracteristic of	Lecture discussion	Assignment

	2.	Factors affecting dissolution of ionic compounds. Fajan's rules – ionic character in covalent compounds 3 Gain knowledge on the factors affecting dissolution of ionic compounds. Recognize ionic character in covalent bonds.		Lecture	Formative assessment -I	
	3.	Percentage of ionic character, Bond moment Dipole moment – applications of dipolemoment	2	Calculate the amount of ionic character in covalent bonds. List the applications of dipolemoment.	Lecture discussion	
	4.	Structure of CO ₂ , H ₂ O, SO ₂ , BF ₃ , NH ₃ , CH ₄ and cis-trans isomerism.	3	Predict the structures of compounds.	Lecture with PPT illustration	Short test
III	Cova	llent Bonding				
	1.	VB approach – postulates Formation of single, double and triple bond with examples Characteristics of covalent compounds	3	Understand the postulates of VB Theory Gain knowledge about the formation of bonds. Recall the characteristics of covalent bonds.	Lecture	Seminar
	2.	VSEPR theory – shapes of inorganic molecules Hybridisation with suitable examples of linear (BeCl ₂) Trigonal planar(BCl ₃) and tetrahedral molecules (CH ₄)	4	Predict the shapes of inorganic molecules. Find out the types of hybridisation.	Lecture with PPT illustration	Formative assessment -II
	3.	Hydrogen bonding – types with examples Effects of hydrogen bonding	2	Gain knowledge about hydrogen bonding. Understand the effects of hydrogen bonding	Lecture discussion	Quiz
IV		amentals of Organic Chemistr	f	·	1 -	G ·
	1.	Cleavage of bonds – homolysis and heterolysis Nucleophiles and electrophiles with examples Reaction intermediates	3	Gain knowledge about cleavage of bonds. Find out nucleophiles and electrophiles Gain knowledge about reaction intermediate	Lecture discussion	Seminar
	2.	Carbocations, carbanions	5	Know about reaction	Lecture	

		and free radicals (preparation, structure and stability) Types of reactions — substitution, addition, elimination and polymerization Aromaticity: General characteristics of aromatic compounds		intermediate. To explain the types of reactions List the characteristics of covalent bonds	wirh PPT illustration	Quiz Multiple choice
	3.	Huckel's rule – benzenoid compounds.	2	Predict aromaticity using Huckel's rule.	Group	questions
V	Alipl	hatic Hydrocarbons	-	··	-	•
	1.	Alkanes (upto five carbons) – preparation – catalytic hydrogenation Wurtz reaction, Kolbe's Reactions - free radical substitution – halogenations	4	Gain knowledge about the preparation and properties of alkanes. Recall Wurtz reaction and Kolbe's synthesis	Lecture discussion	Assignment
				Know about free		
	2.	Alkenes (upto five carbons) – preparation – dehydration of alcohols and dehydrogenation of alkyl halides Saytzeff's rule Reactions – hydration, ozonolysis, and oxidation MarkowniKoff's and anti	5	radical substituition Gain knowledge about alkenes. Apply Saytzeff 's rule. Recall the reactions of alkenes. State and	Lecture wirh PPT illustration	Formative assessment -III
	3.	Alkynes: Preparation – acetylene from calcium carbide Dehalogenation of tetrahalides of metal acetylides, addition of Br2 and alkaline KMnO4	3	Gain knowledge about the preparation of alkynes. Gain Knowledge about dehalogenation reaction. Recall the	Lecture	

Course Instructor: Sheeba Daniel

HOD: G. Leema Rose

Semester-V

Name of the Course : Organic Chemistry III

Course code : CC1751

CO -	Course Outcome	PSO	CL
No.	Upon completion of course students will be able to		
CO - 1	identify the methods of preparation, properties and reaction mechanism of phenols.	PSO - 4	U
CO - 2	prepare and analyze the reactions of poly nuclear hydrocarbons	PSO - 4	С
CO - 3	recognize the classification, preparation and properties of heterocyclic compounds	PSO - 1	R
CO - 4	evaluate the importance and structure of carbohydrates	PSO - 6	Е
CO - 5	understand the inter conversions of carbohydrates	PSO - 1	U
CO - 6	pharmacological activities of drugs	PSO - 8	С
CO - 7.	synthesise various drugs	PSO - 4	С
CO - 8.	evaluate the synthetic uses of drugs	PSO - 5	Е

Unit	Module	Topic	Lecture Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
Ι	Phenols					
	1.	Preparation and properties of phenol	2	To understand the importance of phenol and its methods of preparation	Lecture, Discussion	Evaluation through short test
	2.	Rearrangement reactions with mechanisms	3	To differentiate various reaction mechanisms	Lecture, Discussion	Formative assessment
	3.	Preparation and properties of Nitro phenol, picric acid and amino phenols.	2	To gain knowledge about monohydric phenols	Lecture	Formative assessment
	4.	Preparation, properties and uses of catechol, resorcinol and quinol	3	To get idea about dihydric alcohols	Lecture	Formative assessment, Short test
II	5.	Preparation, properties and uses of phloroglucinol. ear Hydrocarbons	2	To differentiate trihydric alcohols	Question answer session, Lecture	Formative assessment, Assignment
11	1.	Preparation and properties of diphenyl and diphenyl methane.	2	To know about poly nuclear hydrocarbons	Lecture with PPT Illustration	Formative assessment
	2.	Preparation and properties of triphenyl methane and stilbene.	2	To know the properties of aromatic compounds	Lecture, Illustration	Formative assessment
	3.	Haworth synthesis, reactions and structural elucidation of naphthalene and derivatives of naphthalene.	2	To understand clearly about naphthalene.	Lecture, Discussion	Formative assessment, Short test
	4.	Structural elucidation, reactions and uses	4	To study about poly nuclear hydrocarbons	Lecture, Discussion	Formative assessment, Online Quiz

		of anthracene and				
		phenanthrene				
III	Heterocy	velic Compounds				
	1.	Preparation and chemical properties of furan	2	To know about different properties of furan	Lecture, Illustration	Formative assessment, Assignment
	2.	Preparation and chemical properties of pyrrole	3	To learn about pyrrole	Lecture, Illustration	Formative assessment
	3.	Preparation and chemical properties of pyridine	4	To analyse the properties of pyridine	Lecture	Formative assessment Short test
	4.	Preparation and chemical properties of quinoline, isoquinoline and indole	3	To recognise the various types of heterocyclic Compounds	Lecture with PPT Illustration	Seminar, Formative assessment
IV	Carbohy	drates				
	1.	Preparation and chemical reactions of glucose and fructose	2	To know about different electrolytes	Lecture	Formative assessment
	2.	Epimerization and, mutarotation	1	To understand and differentiate between epimerization and, mutarotation.	Lecture, Discussion	Formative assessment, Short test
	3.	Intercoversion between aldoses and ketoses.	2	To acquire knowledge about interconversions.	Lecture	Short test
	4.	Structural elucidation of maltose and sucrose.	3	To evaluate the structure of disaccharides	Lecture, Discussion	Formative assessment
	5	Structure of starch and cellulose	2	To know about polysaccharides	Lecture	Formative assessment
<u> </u>						

V	Drugs and Pharmaceuticals								
	1.	Procedures followed in drug design. Lead components and	4	To know about drug design and modification	Lecture, Discussion	Formative assessment			
	2.	modification. Pharmacological activities of drugs , receptors , metabolites and antimetabolites	3	To gather knowledge regarding the Pharmacological activities of drugs	Lecture	Formative assessment			
	3.	Synthesis of chloramphenicol, benadryl and paracetamol, anti-inflammatory drugs	1	To understand the synthesis and application of drugs	Lecture, Illustration	Formative assessment, Short test			
	4	Synthesisof cardiovasculardru gs,antileprosy drug, HIV related drugs.	4	To learn the synthesis and application of various drugs.	Lecture, Discussion	Formative assessment, Seminar			

Course Instructor: R.Gladis Latha HOD: G. Leema Rose

Name of the Course : Inorganic Chemistry II Course code : CC1752

CO -	Course Outcome	PSO	CL
No.	Upon completion of course students will be able to		
CO - 1	identify the p-block elements in the periodic table.	`PSO - 1	R
CO - 2	analyze the properties of p- block elements	PSO - 2	An
CO - 3	compare inorganic and organic polymers	PSO - 2	U
CO - 4	explain the different metallurgical processes	PSO - 8	Ap
CO - 5	compare the stability of different atomic nuclei.	PSO - 7	Е
CO - 6	illustrate principle of atom bomb and nuclear reactor.	PSO - 1	Ap

Unit	Module	Topics	Lecture	Learning	Pedagogy	Assessment/
			hours	Outcome		Evaluation
	Chemistry of	p-block elements - I				
I	1	General characteristics of Boron family with special reference to inert pair effect - extraction of boron – properties and uses.	3	Explain the characteristics of Boron family elements	Lecture	
	2	Boron trifluoride and boron trichloride – aluminiumtrichloride- preparation, properties and structure.	2	Gain idea about the compounds.	Lecture	Evaluation through short test
	3	Hydrides of boron – preparation, properties and structure of diborane and carboranes. Preparation, properties and structure of boron nitride and borazine.	2	Know the characteristics of Boron and its compounds.	Lecture with ppt	Assignment
	4	General characteristics—comparison of carbon and silicon – structure of diamond and graphite – Fullerenes (definition and examples).	3	Clear idea about allotropes of carbon	Lecture, showing examples of allotropes	

	Chemistry of	p-block elements - II				
II	1	General characteristics – allotropes of phosphorous and arsenic. Structure of oxides of nitrogen, structure of oxy acids of phosphorous.	4	Draw the structure of oxides of nitrogen and oxy acids of phosphorus.	Question answer session	Multiple choice questions
	2	Preparation, properties and uses of hydrazine, hydrazoic acid and hydroxyl amine.	3	Understand the characteristics of hydrazine, hydrazoic acid and hydroxylamine.	Lecture.	1
	3	Anomalous behaviour of oxygen, allotropes of sulphur, oxyacids of sulphur- Caro's acid and Marshall's acid — preparation, properties and structure.	4	Explain the anamolousbeha viour of Oxygen and sulphur.	Lecture with ppt, Group discussion	Short test Formative assessment - I
		General characteristics of halogens, peculiarities of fluorine, inter halogen compounds – definition, preparation, types and structure of XY, XY ₃ , XY ₅ and XY ₇ . Pseudohalogenspreparation and properties of cyanogens, thiocyanogen, selenium cyanogen and azido carbondisulphide, interpseudohalogen compounds.	2	Understand the characteristics of halogens and pseudohalogens	Group discussion	Multiple choice questions
	Noble gases:					<u> </u>
III	I	Occurrence, electronic configuration and rationalization of	2	Get idea about noble gases.	Seminar	

r	T		T	Т	T	1
	2	inertness of noble gases. Isolation of noble gases from the atmosphere- Rayleigh's and Dewar's method. Hydrates of noble gases. Clathrates compounds – preparation, properties and uses. Preparation,	4	Explain clathrate compounds.	Lecture using ppt	Short test
		properties and structure of XeF ₂ , XeF ₄ , XeF ₆ ,XeOF ₂ ,XeOF ₄ and XeO ₃ .				Assignment
	3	Definition – properties, types of inorganic polymers, comparison with organic polymers, synthesis, structural aspects and applications of siloxanes. Preparation and properties of silicates, phosphazenes and polysulphates.	5	Compare inorganic and organic polymers.	Lecture	
	Metallurgy a	nd Alloys				
IV	1	. Minerals and ores – difference between minerals and ores, metallurgical processes – gravity separation, magnetic separation, froth floatation, roasting, calcination and smelting. Purification by electrolysis, oxidative refining, zone	3	Differentiate ores and minerals and understand the methods of purification of ores.	Illustration, Seminar	Multiple choice questions
		refining, Mond's process, Van - Arkel de-Boer process and Kroll's process.				Formative assessment

		T	2	17 1	т.	1
	2	Extraction, properties and uses of V, W, Mo and Ti. Poly valency of vanadium.	3	Know the extraction of metals.	Lecture, Group discussion with ppt	
	3	Definition, purpose of making alloys. Types of alloys – ferrous alloys and non ferrous alloys with examples.	3	List the applications of alloys.	Lecture	Quiz
	4	Preparation of alloysheat treatment of alloys – composition and usesbronze, german silver, nichrome, monel metal, stainless steel, gun metal and bell metal.	3	Know the composition of different alloys.	Lecture, Illustration	
	Nuclear Chen	nistry				
V	1	Nuclear forces- nuclear size- atomic mass unit and N/P ratio. Packing fraction - mass defect-binding energy. Nuclear models- shell and liquid drop. Radioactivity - α, β, γ radiations-their	2	Explain the phenomenon of radioactivity.	Lecture, Quiz	Short test
		properties. Soddy's group displacement law. Natural radioactivity-detection and measurement of radioactivity by Geiger-Muller method				Assignment
	2	Rate of radioactive disintegration- decay constant-half life periodaverage life period. Radioactive equilibrium, artificial radioactivity-artificial transmutation of elements.	3	Calculate decay constant and half life period.	Lecture with ppt	Formative
	3	Nuclear reactions- nuclear fission — principle of atom bomb. Nuclear reactor — thermal and fast breeder	3	Gain knowledge about the types of nuclear	Lecture, Group discussion	assessment - III

	reactor. Radioactive hazards- disposal of radioactive waste from nuclear reactors Nuclear fusion – principle of hydrogen bomb and stellar energy. Principle and working of cyclotron.		reactions.		
4	Applications of radio activity - radioactive tracers in agriculture, medicine and industry. Radiocarbon dating.	4	Apply radioactivity in different branches of science.	Lecture with ppt	

Course Instructor: L. Deva Vijila HOD: G. Leema Rose

Name of the Course : Physical Chemistry II : CC1753

Course code

CO -	Course Outcome	PSO	CL
No.	Upon completion of course		
	students will be able to		
CO - 1	list out various types of dilute	PSO - 1	R
	solutions		
CO - 2	determine the various colligative	PSO - 2	R
	properties		
CO - 3	calculate the molar mass using	PSO - 4	An
	colligative properties		
CO - 4	illustrate the different types of	PSO - 2	Ap
	systems using thermodynamics		_
CO - 5	interpret and correlate the laws of	PSO - 2	AP
	thermodynamics		
CO - 6	calculate the various kinds of energy	PSO - 5	An
CO - 7	compare the entropy change of	PSO - 2	Е
	difficult processes		
CO - 8	assess the absolute entropy of solids,	PSO - 5	Е
	liquids and gases		
CO - 9	create the group multiplication table	PSO - 3	С

CO - 10	assign point groups to simple	PSO - 4	С
	molecules		

Unit	Module	Topic	Lecture Hours	Learning Outcome	Pedagogy	Assessment/ Evaluation
I	Solutions	and Colligative Proper	rties			
	1.	Solutions of non- electrolytes, solutions of liquids in liquids	1	Know the various types of solutions	Lecture, Discussion	
	2.	vapour pressure of non-ideal solutions, type I, type II and type III	1	Know the vapour pressure of solutions	Lecture	
	3.	Vapourpressure,com position and boiling point Composition curves	1	Understand vapour pressure – composition and boiling point - composition curves	Lecture, Discussion	Evaluation through short test, Formative assessment, assignment and MCQs
	4.	Composition curves of completely miscible binary solutions, type I, type II and type III.	2	Draw curves of completely miscible binary solutions - type I, type II and type III.	Lecture	
	5.	Theory of fractional, azeotropic and steam distillations. Solubility of partially miscible liquid systems.	2	Knowfractional, azeotropic and steam distillations.	Lecture	
	6.	Phenol-water system, triethylamine -water system and nicotine- water system.	2	Differentiate upper and lower CST	Lecture, Discussion	
	7.	Colligative properties, definition and examples	1	Understand Colligative properties	Lecture	
	8.	Thermodynamic derivation of relation between concentration and elevation of boiling point	1	Derive the correlation between concentration and elevation of boiling point	Lecture, Discussion	

	9.	Osmosis , reverse osmosis , osmotic pressure and determination of molar mass by depression of freezing point.	3	Derive the correlation between concentration, freezing point and osmotic pressure	Question answer session Lecture	
	10.	Van't Hoff factor degree of association and dissociation.	1	Know Van't Hoff factor	Lecture, Discussion	
II	Thermo	odynamics - I				
	1.	Chemical thermodynamics, importance of system, boundary and surroundings.	2	Know fundamentals of thermodynamic s	Lecture with PPT Illustration	
	2.	Types of systems - open, closed and isolated. Types of processes - isothermal, adiabatic, isobaric and isochoric, reversible and irreversible process.	2	Differentiate isothermal, adiabatic, isobaric and isochoric, reversible and irreversible process.	Lecture, Illustration	Formative assessment, Short test, MCQs Assignment
	3.	Difference between reversible and irreversible process. First law of thermodynamics – different statements.	1	Differentiate reversible and irreversible process	Lecture - Discussion	
	4.	Internal energy and first law, mathematical derivation of first law of thermodynamics. State and path functions	2	Drive first law of thermodynamic s	Lecture	
	5.	Heat capacity of a system - heat capacity at constant volume (Cv) and heat capacity at constant pressure (Cp)	1	Relate Cp and Cv	Lecture - Discussion	

		relationship between Cp and Cv				
	6.	. Joule Thomson effect ,Joule Thomson Coefficient of ideal, real gases and real gases obeying Vanderwaal'sequatio n definition of .Inversion temperature.	2	Derive Joule Thomson Coefficient of ideal, real gases and real gases and Vanderwaal's equation	Lecture - Discussion	
	7.	Derivation of .Zeroth law of thermodynamics ,calculation of ΔE, q, ΔH and w for an ideal and real gas. Enthalpy of a system	1	Calculate of ΔE, q, ΔH and w for an ideal and real gas	Lecture - Discussion	
	8.	Enthalpy of combustion, enthalpy of neutralization and enthalpy of formation.	1	Know enthalpy of combustion, enthalpy of neutralization and enthalpy of formation	Lecture - Discussion	
	9.	Variation of enthalpy of a reaction with temperature (Kirchoff's equation).	1	Drive Kirchoff's equation	Lecture	
	10.	Hess's law of constant heat summation and its applications.	1	Know Hess's law of constant heat summation and its applications.	Lecture	_
III	Therm	odynamics – II			I	1
	1.	Limitation of first law and need for second law of thermodynamics, second law of thermodynamics and	2	Know second law of thermodynamic s and spontaneous process	Lecture, Illustration	Formative assessment,
		spontaneous process				Seminar,

		efficiency of heat engine andCarnot's theorem.		cycle , Carnot's theorem	Illustration	MCQs Assignment
	3.	Third law of thermodynamics, concept of entropy, entropy changes in reversible and irreversible processes.	2	Know Third law of thermodynamic s	Lecture	
	4.	Isothermal, isobaric and Isochoric processes. Entropy of mixing and physical significances of entropy.	2	Give the significance of entropy.	Lecture with PPT Illustration	
	5.	Work function (A), Gibb's Free Energy Function (G) and their significances.	1	Understand Work function (A), Gibb's Free Energy Function (G) and their significances	Lecture - Discussion	
	6.	Derivation of Gibb's Helmholtz equation and its applications.	1	Derive Gibb's Helmholtz equation and its applications.	Lecture	
	7.	Partial molar quantities, partial molar free energyand Gibb's Duhem equation – applications	2	Derive Gibb's Duhem equation and its applications.	Lecture - Discussion	
	8.	Clapeyron equation its applications, .ClausiusClapeyron equation and its applications	2	Derive Clausius – Clapeyron equation and applications	Lecture - Discussion	
IV	Thermod	ynamics – III		,		
	1.	Thermodynamic treatment of law of mass action Van't Hoff reaction	2	To know Van't Hoff reaction isotherm and its significance.	Lecture	

		isotherm and its significance.				Formative assessment,
						Short test,
	2.	Van't Hoff isochore and significance. Fugacity concept determination of fugacity of real gases	2	Understand the concept of Fugacity and its determination	Lecture, Discussion	MCQs Assignment
	3.	variation of fugacity with temperature and pressure	1	Know the variation of fugacity with temperature and pressure	Lecture	
	4.	Physical significance of fugacity, Activity and Activity coefficient.	1	To gather knowledge regarding activity and activity coefficient	Lecture, Discussion	
	5.	Nernst Heat theorem and its applications.	1	Derive Nernst heat theorem and its applications	Lecture - Discussion	
	6.	Determination of absolute entropy of solids, liquids and gases, exceptions to the third law of thermodynamics	2	Gather knowledge in the determination of absolute entropy of solids liquids and gases	Lecture	
	7.	Thermodynamic interpretation of Lechatelier principle statement	2	Able to interpret Lechatelier principle	Lecture - Discussion	
	8.	Effect of change of temperature and pressure on chemical equilibria.	2	Know the Effect of change of temperature and pressure on chemical equilibria.	Lecture - Discussion	
V	Group '	Theory		<u> </u>		
	1.	Symmetry elements and symmetry	2	To know different	Lecture, Discussion	

	operations. Definition of identity (E) and proper rotational axis.		symmetry operations		
2.	Mirror plane (σ),inversioncentre (i) and rotation reflection axis (Sn).	2	To gather knowledge regarding the inversion centre (i) and rotation reflection axis	Lecture	Short test, Formative assessment,
3.	Symmetry operations generated by symmetry elements-H ₂ O, NH ₃ , BF ₃ , [PtCl ₄] ²⁻ , H ₂ O ₂ (Planar, cis and trans) and CH ₄ as examples.	3	To understand Symmetry operations generated by symmetry elements- H ₂ O, NH ₃ , BF ₃ , [PtCl ₄] ²⁻ , H ₂ O ₂	Lecture, Illustration	Seminar
4	Group postulates ,abelian , non-abelian and cyclic group	2	Differentiate abelian and non abelian	Lecture, Discussion	
5.	Group multiplication table	1	Construct Group multiplication table	Lecture	
6.	Molecular point groups, assignment of point groups to simple molecules like H ₂ O, NH ₃ and CO ₂	2	To assign point groups to simple molecules like H ₂ O, NH ₃ and CO ₂	Lecture - Discussion	
7.	Determination of a point group.	1	To determine point groups for simple molecules.	Lecture - Discussion	

Course Instructor: M. Anitha Malbi HOD: G. Leema Rose

: Green Chemistry : CC1754 Name of the Course

Course code

CO - No.	Course Outcome Upon completion of course students will be able to	PSO	CL
CO - 1	know the principles of green chemistry	PSO - 1	R
CO - 2	design green synthesis	PSO - 5	С
CO - 3	interpret green method for organic synthesis	PSO - 3	Е
CO - 4	synthesize various compounds by microwave and ultrasound assisted methods	PSO - 4	С
CO - 5	analyze the important techniques and directions in practicing green chemistry	PSO - 2	An
CO - 6	identify the importance of green chemistry in day to day life	PSO - 8	Ap

Unit	Module	Topics	Lecture	Learning	Pedagogy	Assessment/
	<u> </u>		hours	Outcome		Evaluation
	Introduction	to green chemistry		T	T	1
I	1	Definition, need for green chemistry and	2	Know the need for	Lecture with ppt,	~.
		scope of green chemistry.		green chemistry	Group discussion	Short test
	2	Concept of atom economy, yield, mass intensity and atom economy. Calculation of atom economy, mass intensity, mass productivity and carbon efficiency.	4	Calculate the atom economy, mass intensity, mass productivity and carbon efficiency	Seminar	Multiple choice questions
	3	Different types of reactions and atom economy, addition, substitution, elimination and rearrangements.	2	Differentiate the types of reactions	Illustration, Seminar	Short test
	4	Concept of selectivity, enantioselectivity and chemoselectivity	2	Understand the concept of selectivity	Lecture with ppt	Assignment
	5	Regioselectivity and diastereoselectivity.	2	Know the different types of selectivity	Lecture, Group discussion	Short test Formative assessment - I
	Green solvent	1		T	T .	1
II	1	Super critical fluids, Introduction, extraction of super critical fluids, solvents of super critical fluid, advantages and applications Carbon dioxide as a super critical fluid	4	Learn the extractionan d advantages of super critical fluids.	Question answer session	Short test
	2	Features of technique	3	i	Lecture	1

		for using super critical carbon dioxide, advantages and application. Chemical reaction in supercritical water and Near, Critical Water (NCW), Region		Understand the features of technique for using super critical carbondioxi de		Multiple choice questions
	3	Extraction natural products, dry cleaning, supercritical polymerization, hydrogenation and hydroformylation. Ionic liquid as green solvent: Introduction, synthesis of ionic liquids, acidic ionic liquid and neutral ionic liquids, applications in organic synthesis.	4	Know the process of extraction of natural products and applications	Lecture with PPT, Group discussion	Short test Formative assessment - I
	n catalyst					
III	1	Catalysis over view, acid catalyst, basic catalyst, oxidation catalyst,, polymer supported catalyst, photosensitized super acid catalyst and Tetra	3	Understand the different types of catalyst	Seminar	Short test
		AmidoMacrocylic Ligand(TAML) catalyst.				
	2	AmidoMacrocylic	4	Know the action of Biocatalyst	Assignme nt	Assignment on MO diagrams Quiz

	Green synthesi	S				
IV	1	Green synthesis of the following compounds, Adipic acid, Catechol, Benzoyl bromide, Acetaldehyde, Citral, Ibruprofen and Paracetamol	3	Synthesize different compounds by Green synthesis method	Illustration, Seminar	Multiple choice questions
	2	Microwave assisted reactions in water, Hoffmann Elimination, Hydrolysis of benzyl chloride and methyl benzoate, oxidation of toluene and alcohols.	3	Learn the different microwave assisted reactions in water	Lecture, Group discussion	Formative assessment - II
	3	Microwave assisted reactions in organic solvents, Esterification, Fries rearrangement, Clasien Rearrangement, Diels – Alder Reaction and Decarboxylation.	3	Understand the different microwave assisted reactions in organic solvents	Lecture with ppt	Quiz
	4	Ultra sound assisted reactions, Esterification, Saponification, alkylation, oxidation, reduction, coupling reactions and Cannizaro reactions	3	Learn the different Ultra sound assisted reactions	Lecture, Illustration	Short test
	Green reactio	ns involving basic principl	e of green	chemistry		
V	1	Twelve principles of green chemistry – choice of starting materials – biomimitic, multifunctional reagents , materials reagents.	3	Know the twelve principles of green chemistry	Lecture, Quiz	Short test
	2	Combinatorial green chemistry, Green Chemistry in sustainable developments.	3	Understand the importance of Green Chemistry in sustainable developments	Lecture with PPT	Quiz

3	Importance of Green	4	Learn	the	Lecture,	
	chemistry in day to day		Importance	of	Group	Assignment
	life, versatile bleaching		Green		discussion	
	agents and analgesic		chemistry	in		Formative
	drugs		day to o	day		assessment -
			life			III

Course Instructor: .S.Ajith Sinthuja HOD: G. Leema Rose

Name of the Course : Chemistry for competitive examination

Course code : CSK175

CO - No.	Course Outcome Upon completion of course	PSO	CL
	students will be able to		
CO - 1	recognize and remember theories of atoms	PSO - 1	U
CO - 2	predict chemical bonding	PSO - 2	С
CO - 3	analyse the composition and constituents of atmospheric air	PSO - 8	An
CO - 4	measure the hardness of water	PSO - 5	Е
CO - 5	differentiate between metals and non metals	PSO - 2	U
CO - 6	analyse the chemical compounds present in polymers, drugs and fertilizers	PSO - 11	An

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation		
Matter								
I	1	Definition of matter, physical classification, properties of solids, liquids and gases, changes of physical state.	1	Differentiate between physical properties of solids, liquids and gases,	Lecture discussion	Short test		
	2	Chemical classifications of elements, compounds, mixtures.	1	Know the classifications of elements, compounds, mixtures	Question answer session			
	3	Classifications of metals, non metal and metalloids with example. physical states of some important elements.	1	Evaluate the properties of metal and non metal	Illustration lecture method	Multiple choice		
	4	Compounds, definition, classifications of inorganic and organic compounds with examples, Some important compounds and their common names and uses. Characteristics of compounds.	1	Differentiate between inorganic and organic compounds	seminar	questions Assignment		
	5	Mixtures, definitions- classifications homogenous and heterogeneous examples properties of	1	Evaluate properties of compounds and mixtures.	Lecture with PPT			

		miyturos				
		mixtures, differences				
		between				
		compounds and				
		mixtures.				
	6	Separation of mixtures – techniques, principles and examples; Handpicking, sieving, magnetic separation, sublimation, sedimentation, Decantation, filtration,	2	Learn the different techniques of separation of mixtures	demonstration	
		evaporation,				
		Distillation,				
		Crystallization				
	cture of A					
II	1	Atoms, definition,	1	Understand the	Group	Assignment,
		Dalton's atomic		atom models	discussion	
		theory, atom				
		models,				
		Rutherford, J.J.				
		Thomson and Bohr				
	2	Sub-atomic	1	Know the sub	Illustration	
	_	particles, charges		atomic particles	lecture	Short test
		of sub- atomic		r	method	
		particles,				Multiple
		discoveries of				choice
		subatomic				questions
		particles.				questions
	3	Atomic and mass	1	Remember the	Question	
		number isotopes,	1	symbols for	answer	
		symbols for		elements	session	
		elements		Cicincing	Session	
	4	Principles	1	Learn filling up	lecture	
		governing filling	•	of atomic	method	
		up of electrons in		orbitals	111041104	
		the orbitals.		Oloimis		
		Electronic				
		configurations of				
		first twenty				
		inst twenty				

		elements.					
Classification of Elements and Periodicity of Properties							
III	1	Classification of elements of Doberiner, Newlands, Mendeleev and modern Perioidc tables	1	Remember the different forms of periodic tables	Group discussion		
	2	Group and Periods – classification of elements into s,p,d and f block with examples	2	Learn the classification of the elements	Lecture method	Short test, Multiple	
	3	Periodicity of properties –atomic – ionic radii - ionization potential energy	1	Analyse the variation in periodic properties.	Group discussion	choice questions, Online	
	4	Electron affinityand electronegativity.	1	Evaluate the variation in Electron affinity and electronegativity	Question answer session	assignment	
		ling and Non-Metals			<u> </u>	<u></u>	
IV	1	Need for the chemical bond formation-introduction to ionic bond, covalent bond, coordinate bond and metallic bond-ionic bond formation, lattice energy-formation with example as NaCl	2	Differentiate the types of bonds	Lecture with PPT	Short test,	
	2	Covalent bond – definition and explanation using H ₂ , O ₂ , N ₂ and CH ₄	1	Identify covalent bond	Lecture method	Multiple choice questions	
	3	Properties of ionic and covalent compounds Noble gases and their applications	1	Learn the properties of covalent bond	Seminar		
	4	Halogens and their applications preparation and uses of Hydrogen, phosphorus and sulphur	1	Know the uses of H, P and S	Group discussion		
	5	Allotropes of Carbon - graphite, diamond and fullerene.	1	Diffferentiate the allotropes of carbon	Question answer session		

Air and Water						
V	1	Atmosphere, different layers of atmosphere and their compositions, composition of air, uses of various components of air	1	Analyse the components of air		
	2	Air pollution, sources, effects and control measures	1	Evaluate the sources of air pollution	Group discussion	Multiple choice questions,
	3	Water, abnormal properties of water and its explanation using H-bonding- Hard and soft water, temporary and permanent hardness	1	Compare the different water sources and analyse its hardness	Demonstratio n	Formative assesment
	4	Removal of hardness – Boiling, Clarks process, Zeolite process and washing soda process, Reverse osmosis	1	Learn the methods of removal of hardness	Illustration lecture method	
	5	preparation and uses of distilled water	1	Understand the uses of distilled water	Group discussion	

Course Instructor : K. Francy HOD: G. Leema Rose